6 Рамные конструкции

6.1 Общие сведения, классификация рам

Рамные конструкции относятся к классу распорных и являются одним из наиболее распространенных типов несущих конструкций. Они хорошо вписываются в поперечное сечение большинства производственных и общественных зданий.

Деревянные рамы обычно применяют однопролетными при пролетах 12,0 - 60,0 м.

Классификация рам:

а) по статической схеме:

- трехшарнирные (статически определимыми) (рисунок 6.1);

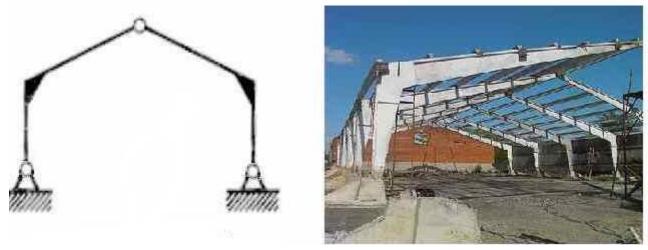


Рисунок 6.1 – Трехшарнирная статически определимая рама

Трехшарнирные рамы наиболее распространены, так как в статически определимых системах не происходит перераспределения усилий при деформировании под длительно действующей нагрузкой, что обеспечивает соответствие их расчетным усилиям.

- *двухшарнирные* жестко опертые (статически неопределимые) (рисунок 6.2):

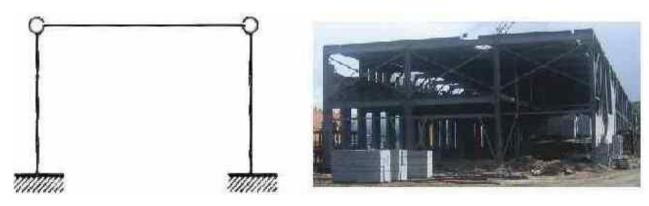


Рисунок 6.2– Двухшарнирная жестко опертая статически неопределимая рама

- *двухшарнирные шарнирно опертые (статически неопределимые)* (рисунок 6.3):

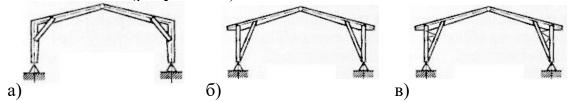


Рисунок 6.3 – Двухшарнирная шарнирно опертая статически неопределимая рама

б) По конструктивному решению различают:

- рамы построечного изготовления;
- рамы заводского изготовления.

Рамы построечного изготовления собирают из досок и брусьев непосредственно на строительной площадке. В этих рамах используют преимущественно податливые виды соединений: болты, гвозди, упоры. Ригель и стойки таких рам могут иметь сплошное сечение или выполняются в виде решетчатых систем (рисунок 6.4).

а) рамы построечного изготовления с подкосами в карнизном узле; б) рамы построечного изготовления с опорными подкосами; в) рамы построечного изготовления с решетчатыми стойками

Рисунок 6.4 – Рамы построечного изготовления.

К рамам построечного изготовления относятся также рамы с перекрестной стенкой на гвоздях. Конструкция таких рам аналогична конструкции балки с перекрестной стенкой на гвоздях.

Рамы построечного изготовления отличаются большим количеством узлов и требуют больших затрат труда и высококачественных материалов.

Наибольшее распространение получили рамы заводского изготовления или клееные рамы.

В зависимости от технологии изготовления или используемых материалов клееные рамы можно разделить на три группы:

- дощатоклееные из прямолинейных элементов;
- гнутоклееные из склеенных по пласти досок наиболее распространены;
- клеефанерные, имеющие дощатые пояса и стенки из водостойкой фанеры.

6.2 Дощатоклееные рамы из прямолинейных элементов

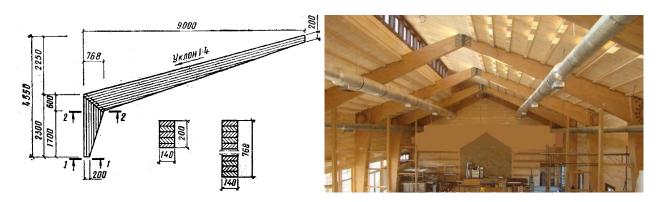


Рисунок 6.5 – Дощатоклееные рамы из прямолинейных элементов.

Более эффективны рамы из прямолинейных элементов с жесткими клееными узлами - для их изготовления используется пиломатериал обычной толщины. При этом склеивают пакет досок, который затем распиливают по диагонали, получая при этом две стойки или два ригеля.

6.3 Гнутоклееные рамы

Эти рамы, как правило, имеют прямолинейные элементы ригеля и стойки.

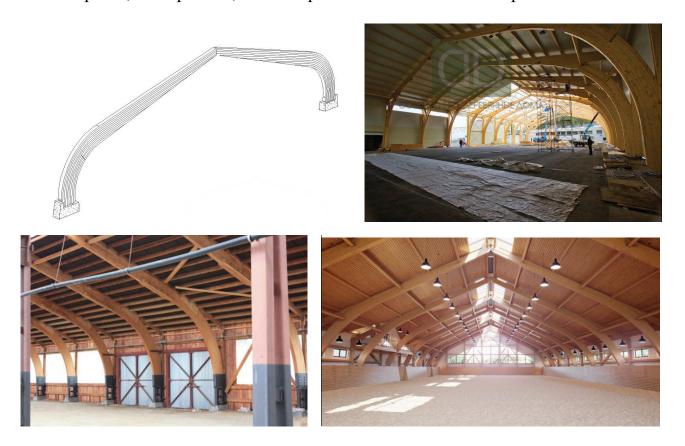
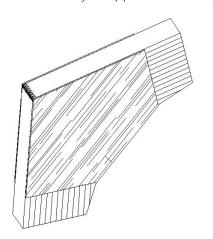
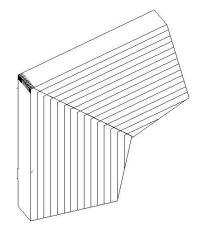


Рисунок 6.6 – Виды гнутоклееных рам

В таких рамах для образования карнизного узла доски выгибаются, образуя плавный переход от ригеля к стойке - жесткий узел выполняется цельноклееным, что выгодно отличает данную конструкцию от рам с карнизными узлами на податливых связях.


При наибольшей высоте стойки вся рама выполняется из двух элементов Г-образного очертания, соединенных между собой в коньке.


В связи с необходимостью выгиба досок в узле сопряжения ригеля и стойки для этих рам необходим тонкий пиломатериал толщиной 12 - 17 мм (после острожки), что связано со значительным удорожанием конструкции (увеличиваются потери древесины, расход клея, трудозатраты на изготовление).

6.3.1 Классификация соединений

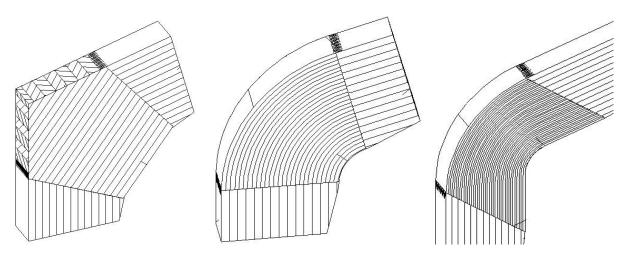
Существует несколько конструктивных решений соединения прямолинейных элементов рам в жестком узле:

- ригель и стойка соединяются при помощи приклеенных к ним в узле двусторонних накладок из бакелизированной фанеры. Недостатком соединения является возникновение в клеевых швах по плоскостям приклейке накладок к широким дощатым элементам опасных внутренних напряжений, обусловленных различием влажностных деформаций древесины и бакелизированной фанеры.
- соединение ригеля со стойкой на зубчатый шип надежный и перспективный тип соединения. При таком соединении стойки и ригеля в карнизном узле возникают нежелательные концентрации напряжений, поэтому чаще сопряжения элементов рамы в жестком узле производят при помощи специальных вставок, соединенных с ригелем и стойкой.

а - соединение ригеля и стойки накладками из фанеры; б - соединение ригеля со стойкой на зубчатый шип;

Рисунок 6.7 — Соединение ригеля и стойки накладками из фанеры, соединение ригеля со стойкой на зубчатый шип

- соединение ригеля со стойкой с помощью вставок.


6.3.2 Классификация вставок

По форме вставки могут быть двух видов:

- *пятиугольные* - соединяются с элементами рамы под углом к волокнам. Поэтому в рамах с пятиугольными вставками определяющим условием при назначении размеров поперечного сечения элемента в узлах является несущая способность работающего под углом к волокнам на растяжение соединения его со вставкой.

Кроме этого, в самой вставке не исключается выклинивание кососрезных досок, выходящих на растянутую кромку рамы в месте наибольшего изгибающего момента. Конструкции жестких узлов с такими вставками можно использовать только в легких рамах, где решающим фактором при назначении поперечных размеров элементов является расчет не по первому, а по второму предельному состоянию.

- *гнутоклееные вставки* постоянной, либо переменной длины. Вставки постоянной длины предпочтительнее, т. к. здесь увеличивается площадь клеевых швов в стыке, что повышает надежность соединения. Применение гнутоклееных вставок позволяет создавать рамные конструкции с широким диапазоном углов наклона ригеля к стойке.

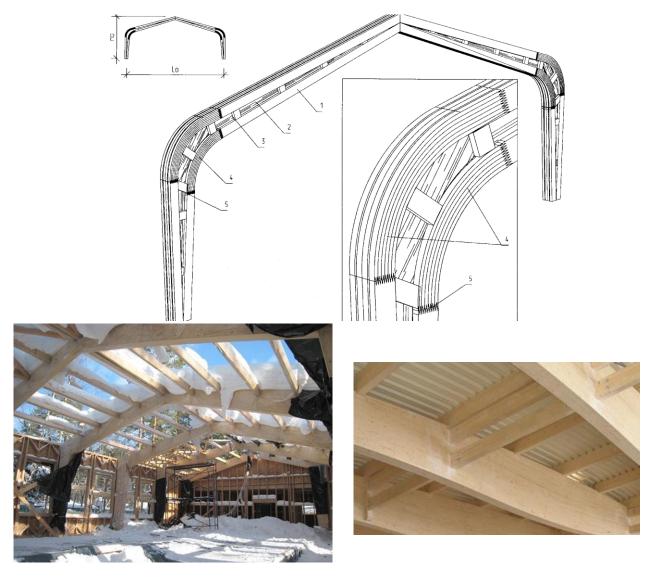
а - соединение ригеля и стойки при помощи пятиугольной вставки, б - гнутоклееное соединение ригеля и стойки переменной длины, в - гнутоклееное соединение ригеля и стойки постоянной длины.

Рисунок 6.8 — Соединение ригеля и стойки при помощи пятиугольной вставки, гнутоклееное соединение ригеля и стойки.

6.3 Клеефанерные рамы

Существенную экономию пиломатериалов, облегчение веса и уменьшение стоимости конструкции можно получить в рамах, поперечное сечение которых состоит из дощатых поясов и фанерных стенок.

Клеефанерные рамы легче гнутоклееных на 35...40 %.


Поперечное сечение рам может быть двутавровым или двутаврово - коробчатым.

При выборе формы сечения элементов рам предпочтение следует отдавать поперечному сечению, состоящему из двух или нескольких склеенных по ширине двутавров. В этом случае обеспечивается симметричное загружение стенок сдвигающими усилиями относительно их продольных осей, а также увеличение количества площадок скалывания при проверке на скалывание между слоями шпона фанеры.

Для стенок рекомендуется использовать фанеру марки Φ С Φ , как наиболее доступную по стоимости. Количество фанерных стенок, а так же их толщина определяются расчетом.

Сопряжение поясов (сжатого и растянутого) в жестком переломленном узле рамы рекомендуется проектировать с использованием гнутоклееных вставок, соединенных с дощатыми поясами рам зубчато-шиповым стыком.

В клеефанерных рамах указанные стыки могут размещаться как в одном сечении пояса, так и вразбежку. В последнем случае достигается увеличение надежности стыкуемого соединения.

1 — клеедощатые пояса, 2 — фанерная стенка, 3 — дощатые ребра жесткости на стыках фанерных листов, 4 — гнутоклееная ставка в поясах, 5 — соединение на зубчатый шип Рисунок 6.9 — Клеефанерная рама.

Гнутоклееные вставки (внутренняя и наружная) могут изготавливаться из разных материалов: внутренняя, имеющая меньший радиус — из шпона, наружная — из досок.

Конструктивные возможности при создании разнообразных форм в клеефанерных рамах с гнутоклееными вставками больше, чем в клеедощатых: легко конструируются рамы с консолями, причем увеличение сечения в защемленных стойках достигается без перерасхода материалов, что позволяет создавать оригинальные рамы.

Геометрические размеры клееных рам:

- пролеты 12,0-24,0 м, высота стоек 2,6-4,5 м,
- уклон ригеля 1/3 1/3, шаг 3.0 6.0 м,
- высота сечения в коньке не менее 0.3 высоты сечения в карнизном узле,
- высота сечения в карнизном узле: 1/12 1/30 пролета,
- высота сечения стоек у опор: не менее 0,4 высоты в карнизном узле.

Расчету рамы предшествует установление ее расчетной схемы (двухшарнирная или трехшарнирная) и расчетной оси.

6.3 Расчет рам

Расчет рамы выполняют в следующей последовательности:

- 1) статический расчет, т. е. вычисление усилий в элементах рамы от действия внешних нагрузок (снег, ветер) собственного веса рамы и веса покрытия;
 - 2) проверка сечений рамы;
 - 3) расчет узлов рамы.

При статическом расчете определяют усилия и строят эпюры M, N, Q от действия равномерно распределенной нагрузки отдельно от собственного веса конструкций, от снеговой нагрузки слева, справа от конькового узла и на всем пролете, а так же от действия равномерно распределенной нагрузки от ветра слева и справа.

При высоте стойки до 4,0 м расчет на ветровую нагрузку можно не производить.

Например, так выглядит загружение от собственного веса (рисунок 6.8).

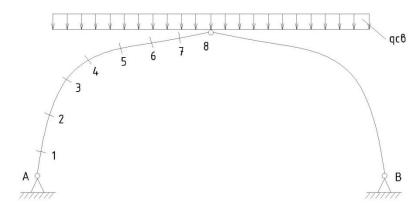


Рисунок 6.10 – Загружение рамы от собственного веса.

Усилия в раме можно определять либо относительно ее геометрической оси, либо относительно наружного контура. В последнем случае необходима корректировка изгибающего момента вследствие переноса нормальной силы с нагруженного контура на ось сечения.

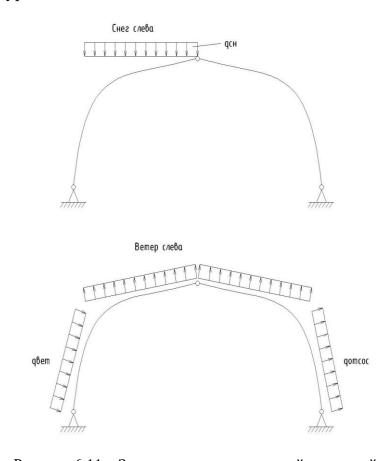
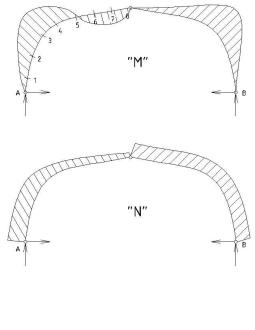


Рисунок 6.11 – Загружение рамы ветровой нагрузкой.

Усилия определяются методами строительной механики в характерных точках по периметру рамы, например A, 1, 2, 3, 4, 5, 6, 7, 8. Количество точек определяется характером эпюр. Для примера покажем эпюры M, N, Q от равномерно распределенной нагрузки слева от конькового узла.


Целесообразно сначала определить усилия и эпюры от равномерно распределенной единичной нагрузки $(q_1=1)$, а затем с учетом коэффициента $k=q/q_1$, (где q – реальная нагрузка, q_1 – единичная нагрузка) определять усилия от реальных нагрузок.

В результате статического расчета определяются расчетные усилия в сечениях рамы при основных и дополнительных сочетаниях нагрузок:

- а) расчетная постоянная и временная на всем пролете;
- б) постоянная на всем пролете, временная на половине пролета;
- в) по схемам а и б в сочетании с ветром.

При выполнении статического расчета рамы, также как и при расчете других конструкций необходимо пользоваться СП «Нагрузки и воздействия».

Поскольку в настоящее время в практике строительства применяют только клееные рамы, то в дальнейшем речь будет идти об этих рамах.

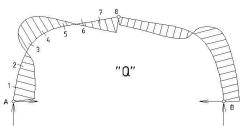


Рисунок 6.12 - Эпюры M, N, Q.

Проверка сечений рамы.

Наиболее напряженными сечениями по нормальным напряжениям, если обратить внимание на эпюры М и N, для рам являются карнизные узлы, а для рам с подкосами – сечения у концов подкоса в местах примыкания его к стойке и ригелю.

1. *Расчет на прочность* элементов трехшарнирных рам в их плоскости допускается выполнять по правилам расчета сжато-изгибаемых элементов с расчетной длиной, равной длине полурамы по осевой линии:

$$\sigma = \frac{N}{F_{pac^{4}}} + \frac{M_{d}}{W_{pac^{4}}} \le R_{c}. \tag{6.1}$$

2. *Устойчивость плоской формы* деформирования трехшарнирных рам допускается выполнять по формуле:

$$\sigma = \frac{N}{\varphi \cdot R_c \cdot F_{\delta p}} + \left(\frac{M_d}{\varphi_m \cdot R_u \cdot W_{\delta p}}\right)^n \le 1, \tag{6.2}$$

где Fбр – площадь брутто с максимальными размерами сечения элемента на участке lp;

Wбр – максимальный момент сопротивления на рассматриваемом участке lp;

n - показатель степени, зависящий от наличия закреплений растянутой зоны элемента в плоскости деформирования элемента, где:

- n = 1 для элементов, имеющих закрепления в растянутой зоне из плоскости деформирования;
- n = 2 для элементов без закрепления растянутой зоны из плоскости деформирования,
 - ф коэффициент продольного изгиба, определяемый по формуле:

$$\varphi = \frac{A}{\lambda^2},\tag{6.3}$$

где A = 3000 - для древесины, <math>A = 2500 - для фанеры;

 ϕ_m — коэффициент устойчивости для изгиба, определяемый по формуле (10.7).

$$\varphi_m = 140 \frac{b^2}{\ell_p \cdot h} \cdot k_{\phi}, \tag{6.4}$$

где l_p — расстояние между опорными сечениями элемента (расстояние между точками закрепления сжатого пояса),

b – ширина поперечного сечения,

h – максимальная высота поперечного сечения на участке $l_{\rm p}$,

 k_{ϕ} – коэффициент, зависящий от формы эпюры на участке \hat{l}_{p} [1].

3. Криволинейные участки гнутоклееных рам

Криволинейные участки гнутоклееных рам при отношении h/r≥1/7 (h – высота сечения, r – радиус кривизны центральной оси криволинейного участка) следует рассчитывать по формуле (6.1).

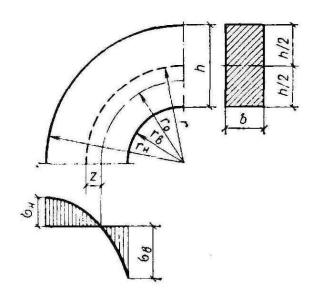
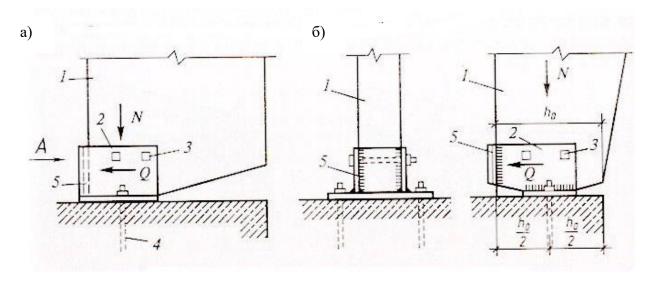
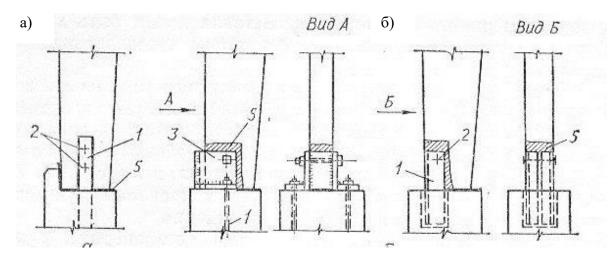


Рисунок 6.13 - Криволинейный участок гнутоклееной рамы


Здесь при проверке напряжений по внутренней кромке расчетный момент сопротивления следует умножать на коэффициент k_{rb} :

$$k_{rb} = \frac{1 - 0.5h/r}{1 - 0.17h/r}. (6.5)$$

6.4 Расчет узлов рамы


Для рам заводского изготовления выполняется расчет опорного и конькового узлов. Опорные шарнирные узлы клееных рам могут быть весьма разнообразными.

Покажем несколько вариантов опорных узлов:

a — со стойкой постоянного сечения, 6 - со стойкой переменного сечения, 1 — стойки, 2 — стальной башмак, 3 — болт, 4 — анкер, 5 — сварной шов

Рисунок 6.14 - Варианты опорных узлов

а — шарнирное опирание, б — жесткое опирание, 1 — металлический анкер, 2 болты (глухари), 3 — стальной башмак, 4 — анкерные болты, 5 — гидроизоляция. Рисунок 6.15 - Варианты опорных узлов

Для всех вариантов опорных узлов продольная сжимающая сила N воспринимается смятием вдоль волокон древесины стойки. В этом случае проверку выполняют по формуле:

$$\sigma_{\scriptscriptstyle {\it CM.}} = \frac{N}{F} \leq R_{\scriptscriptstyle {\it CM.}}$$

Поперечная сила, Q, может быть передана на фундамент через болты или глухари, крепящие стойку к стальным элементам, заделанным в фундамент. В этом случае рассчитывается количество болтов, воспринимающих силу Q.

В другом варианте опорного узла поперечная сила передается через деревянный брусок или через вертикальный лист стального башмака. В этом случае

$$\sigma_{_{CM},90} = \frac{N_{_{CM}}}{F_{_{CM}}} \le R_{_{CM},90}, \tag{6.6}$$

где N_{cm} - расчетная сжимающая (сминающая) сила;

F_{см} - расчетная площадь сжатия (смятия);

 $R_{\mbox{\tiny cm.90}}$ - расчетное сопротивление древесины сжатию и смятию поперек волокон/

Коньковый узел чаще всего решается с деревянными накладками на болтах, хотя возможны и другие варианты конькового узла (при больших величинах поперечной силы), например, с металлическими соединительными деталями.

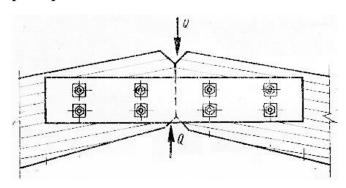


Рисунок 6.16 - Коньковый узел

Количество болтов рассчитывается из условия восприятия ими поперечной силы.

Лобовые упоры соединения ригелей рассчитывают на смятие под углом и вдоль волокон на действие продольной силы N.